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Abstract We consider the one-dimensional Totally Asymmetric Zero-Range process evolv-
ing on Z and starting from the Geometric product measure νρ . On the hyperbolic time scale
the temporal evolution of the limit density fluctuation field is deterministic, in the sense that
the limit field at time t is a translation of the initial one. We consider the system in a refer-
ence frame moving at this velocity and we show that the limit density fluctuation field does
not evolve in time until N4/3, which implies the current across a characteristic to vanish on
this longer time scale.

Keywords Totally Asymmetric Zero-Range · Equilibrium Fluctuations · Boltzmann-Gibbs
Principle · Multi-scale argument

1 Introduction

In this paper, we study the Totally Asymmetric Zero-Range process (TAZRP) in Z. In this
process, if particles are present at a site x, then after a mean one exponential time, one of
them jumps to x + 1 at rate 1, independently of the particles at other sites. This is a Markov
process η· with space state N

Z, where the configurations are denoted by η, so that for a site
x, η(x) represents the number of particles at that site. For each density ρ of particles, there
exists an invariant measure denoted by νρ , which is translation invariant and is such that
Eνρ [η(0)] = ρ, that is the Geometric product measure introduced below in (2.1).

Since the work of Rezakhanlou in [9], it is known that for the TAZRP the macroscopic
particle density profile in the Euler scaling of time N , evolves according to the hyperbolic
conservation law ∂tρ(t, u)+∇φ(ρ(t, u)) = 0, where φ(ρ) = ρ

1+ρ
. Since φ is differentiable,

last equation can also be written as ∂tρ(t, u) + φ′(ρ(t, u))∇ρ(t, u) = 0 and characteristics
of partial differential equations of this type are straight lines with slope φ′(ρ). This result
is a Law of Large Numbers for the empirical measure related to this process starting from
a general set of initial measures associated to a profile ρ0, see [9] for details. If one wants
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to go further and show a Central Limit Theorem (C.L.T.) for the empirical measure starting
from the equilibrium state νρ , one has to consider the density fluctuation field as defined
below, see (2.2).

It is not difficult to show that under the hydrodynamic time scale, the limit density fluc-
tuation field at time t is just a translation of the initial density field, which is a Gaussian
white noise. The translation or velocity of the system is given by φ′(ρ) = 1

(1+ρ)2 which is
the characteristic speed. This same phenomenon happens for the Asymmetric Simple Ex-
clusion process (ASEP) on the hyperbolic time scale, starting from the Bernoulli product
measure μα , which is an invariant state and the velocity of the system there is given by
1 − 2α, see [3] and [4] for details. If we consider the particle system moving in a reference
frame with this constant velocity, then the limit density fluctuation field does not evolve in
time and one is forced to consider the process evolving on a longer time scale. Following the
same approach as in [4] we can accomplish the result for the TAZRP, up to the time scale
N4/3, i.e. in this case the limit field at time t still coincides with the initial field. Using this
approach, the main difficulty in proving the C.L.T. for the empirical measure is showing that
the Boltzmann-Gibbs Principle holds for this process, which we can handle by generalizing
the multi-scale argument done for the ASEP in [4]. This Principle says, roughly speaking,
that non-conserved quantities fluctuate in a faster scale than conserved ones, so when av-
eraging in time a local field, what survives in the limit is its projection over the conserved
quantities. To prove last result for the TAZRP there are some extra computations due to the
large space state, which we can overcome by using the equivalence of ensembles and a Tay-
lor expansion of the instantaneous flux, in order to avoid the correlation terms. In fact, this
result should be valid until the time scale N3/2 and this is a first step on that direction.

Since up to the time scale N4/3, the macroscopic behavior of the system does only depend
on the initial state, this implies that the flux or current of particles across a characteristic
vanishes on this longer time scale. If one wants to observe non-trivial fluctuations of this
current the process should be speeded up on a longer time scale. In fact, it was recently
proved by [2] that the variance of the current across a characteristic is of order t2/3 and this
translates by saying that in fact our result should hold until the time scale N3/2. Indeed,
this result should hold for more general systems than TAZRP or ASEP (see [4]), but for the
case of one-dimensional systems with one conserved quantity and hydrodynamic equation
of hyperbolic type, whose flux is a concave function. This is a step towards showing the
universality behavior of the scaling exponent for these systems.

This paper is a natural extension of [4] and the multi-scale argument seems to be robust
enough to be able to generalize it to other models and to achieve the conjectured sharp time
scale N3/2, this is subject to future work.

We remark that all the results presented here, also hold for a more general Zero-Range
process, namely one could take a Zero-Range dynamics in which the jump rate from x to
x + 1 is given by g(η(x)), with g nondecreasing and satisfying conditions of Definition 3.1
of Chap. 2 of [7]. We could also consider partial asymmetric jumps, in the sense that a
particle jumps from x to x + 1 at rate pg(η(x)) and from x to x − 1 at rate qg(η(x)), where
p + q = 1, p �= 1/2 and with g as general as above. The results are valid for these more
general processes, but in order to keep the presentation simple we state and prove them for
the TAZRP.

An outline of the article follows. In the second section, we introduce the notation and
state the main results. In the third section, we consider the process evolving on the hyperbolic
time scale and we show the C.L.T. for the current over a fixed bond. In the fourth section,
we use the same approach as in [4] to prove the C.L.T. for the empirical measure on a
longer time scale and the vanishing of the current across a characteristic. The proof of the
Boltzmann-Gibbs Principle is postponed to the fifth section.
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2 Statement of Results

The one-dimensional Totally Asymmetric Zero-Range process is the Markov process η· with
generator L given on local functions f : N

Z → R by

Lf (η) =
∑

x∈Z

1{η(x)≥1}(f (ηx,x+1) − f (η)),

where

ηx,x+1(z) =
⎧
⎨

⎩

η(z), if z �= x, x + 1,

η(x) − 1, if z = x,

η(x + 1) + 1, if z = x + 1.

In order to keep notation the more general as we can, we denote by g(η(x)) the function
1{η(x)≥1}, which denotes the jump rate of a particle leaving the site x.

The description of this process is the following. At each site, one can have any integer
number of particles and after an exponential time of rate one, one of the particles at that
site, jumps to the right neighboring site, at rate 1. Initially, place the particles according to
a Geometric product measure in N

Z of parameter 1
1+ρ

, denoted by νρ , which is an invariant
measure for the process and has marginal given by:

νρ(η : η(x) = k) =
(

ρ

1 + ρ

)k 1

1 + ρ
. (2.1)

Since the work of Rezakhanlou in [9], it is known that taking the TAZRP in the Euler
time scaling and starting from general probability measures associated to a profile ρ0 (for
details we refer the reader to [9]), one gets in the hydrodynamic limit to the hyperbolic
conservation law:

∂tρ(t, u) + ∇φ(ρ(t, u)) = 0

where the flux φ(·) is given by φ(ρ) = Eνρ [g(η(0))] = ρ

1+ρ
.

Fix a configuration η and let πN(η, du) denote the empirical measure given by

πN(η, du) = 1

N

∑

x∈Z

η(x)δ x
N

(du)

where δu denotes the Dirac measure at u and let πN
t (η, du) = πN(ηt , du).

In order to state the C.L.T. for the empirical measure we need to define a suitable set of
test functions. For an integer k ≥ 0, denote by Hk the Hilbert space induced by the Schwartz
space S(R) and the scalar product 〈f,g〉k = 〈f,Kk

0 g〉, where 〈·, ·〉 denotes the inner product
of L2(R), K0 = x2 − 
 and 
 denotes the usual Laplacian. Denote by H−k the dual of Hk

relatively to the inner product of L2(R).
Fix ρ and an integer k. Denote the density fluctuation field by Y N

. , i.e. the linear func-
tional acting on functions H ∈ S(R) as

Y N
t (H) = √

N
(〈H,πN

t (η, du)〉 − Eνρ 〈H,πN
t (η, du)〉)

= 1√
N

∑

x∈Z

H

(
x

N

)
(ηt (x) − ρ), (2.2)
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where 〈H,πN
t (η, du)〉 denotes the integral of a test function H with respect to the measure

πN
t (η, du). Denote by D(R+, H−k) (resp. C(R+, H−k)) the space of H−k-valued functions,

right continuous with left limits (resp. continuous), endowed with the uniform weak topol-
ogy, by QN the probability measure on D(R+, H−k) induced by Y N

. and νρ , by Pνρ the
probability measure on D(R+,N

Z) induced by νρ and η· speeded up by N and denote by
Eνρ the expectation with respect to Pνρ . Here we denote by ηN· the process η· speeded up by
N , namely ηN

t = ηtN .
Following the same arguments as done for the Symmetric Zero-Range process in

Chap. 11 of [7], it is not difficult to prove that the limit density field at time t is a sim-
ple translation of the initial one, this is stated as a Theorem below.

Theorem 2.1 Fix an integer k > 2. Denote by Q the probability measure on C(R+, H−k)

corresponding to a stationary Gaussian process with mean 0 and covariance given by

EQ[Yt (H)Ys(G)] = χ(ρ)

∫

R

Tt−sH(u)G(u)du

for every 0 ≤ s ≤ t and H , G in Hk . Here χ(ρ) = Var(η(0), νρ) = Eνρ [(η(0) − ρ)2] and
TtH(u) = H(u + φ′(ρ)t). Then, (QN)N≥1 converges weakly to Q.

Last result holds for the TAZRP evolving in any Z
d with the appropriate changes. The

idea of the proof is to show that (QN)N is a tight sequence, which implies that it has con-
vergent subsequences and then one characterizes the limiting measure. For the later, one
analyzes asymptotically the martingale characterization of the density fluctuation field and
shows that the limiting measure Q is supported on fields Y·, such that for a fixed time t and
a test function H

Yt (H) = Y0(TtH). (2.3)

It is not difficult to show that Y0 is a Gaussian field with covariance given by
EQ(Y0(G)Y0(H)) = χ(ρ)〈G,H 〉. Concluding, in the hydrodynamic time scale, the fluc-
tuations of the limit field are linearly transported from the initial ones.

Now we introduce the current of particles through a fixed bond. For a site x, let JN
x,x+1(t)

be the total number of jumps from the site x to x + 1 during the time interval [0, tN ].
Formally one can write

JN
x,x+1(t) =

∑

y≥x+1

(
ηN

t (y) − η0(y)
)
.

Since the current of particles can be approximated by the difference between the density
fluctuation field at time t and at time zero, evaluated on the Heaviside function, an easy
consequence of last result is the derivation of the C.L.T. for the current over a fixed bond,
see [5] for details.

Theorem 2.2 Fix x ∈ Z, t ≥ 0 and let

ZN
t = 1√

N

{
JN

x,x+1(t) − Eνρ [JN
x,x+1(t)]

}
.

Then, under Pνρ

ZN
t√

χ(ρ)φ′(ρ)
→

N→+∞
Bt

weakly, where Bt denotes the standard Brownian motion.
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As seen above, in the hyperbolic scaling, the limit density fluctuation field at time t is
a translation of the initial one and the translation is given by the characteristic speed, see
(2.3). Removing from the system this velocity, the limit field does not evolve in time and
one is forced to go beyond the hydrodynamic time scale. In order to see how far we can
go to observe the same trivial behavior of the limit density field, we consider the process
evolving on the time scale N1+γ , with γ > 0. For this process we are able to show that up to
the time scale N4/3 this is indeed the case. For that let ηN

t = ηtN1+γ be the TAZRP evolving
on the time scale N1+γ , fix ρ and redefine the density fluctuation field on H ∈ S(R) by:

Y N,γ
t (H) = 1√

N

∑

x∈Z

H

(
x − φ′(ρ)tN1+γ

N

)
(ηt (x) − ρ). (2.4)

As above, let Q
γ

N be the probability measure on D(R+, H−k) induced by Y N,γ
. and νρ ,

let P
N,γ
νρ

= P
γ
νρ

be the probability measure on D(R+,N
Z) induced by νρ and η· speeded up

by N1+γ and denote by E
γ
νρ

the expectation with respect to P
γ
νρ

.

Theorem 2.3 Fix an integer k > 1 and γ < 1/3. Let Q be the probability measure on
C(R+, H−k) corresponding to a stationary Gaussian process with mean 0 and covariance
given by

EQ[Yt (H)Ys(G)] = χ(ρ)

∫

R

H(u)G(u)du

for every s, t ≥ 0 and H , G in Hk . Then, (Qγ

N )N≥Q1 converges weakly to Q.

The main difficulty to overcome when showing last result is the Boltzmann-Gibbs Prin-
ciple, which we can prove for γ < 1/3 by applying a multi-scale argument as done for the
ASEP in [4].

Theorem 2.4 (Boltzmann-Gibbs Principle) Fix γ < 1/3. For every t > 0 and H ∈ S(R),

lim
N→∞

E
γ
νρ

[(∫ t

0

Nγ

√
N

∑

x∈Z

H

(
x

N

)
Vg(η

N
s (x))ds

)2]
= 0,

where

Vg(η(x)) = g(η(x)) − φ(ρ) − φ′(ρ)(η(x) − ρ) (2.5)

and φ(ρ) = Eνρ [g(η(0))].

The special features of the process that one uses to derive this result, when applying
Proposition A1.6.1 of [7], are: the spectral gap bound for the corresponding symmetric
dynamics on boxes of fixed size and the equivalence of ensembles (see Corollary A2.1.7
of [7]). As mentioned in the introduction this result should be valid for γ < 1/2, which
corresponds to N3/2. Since we apply the Proposition mentioned above, which bounds the
expectation appearing in the statement of the Boltzmann-Gibbs Principle by the square of
the H−1-norm of the function that is inside the time integral and since this norm does not
capture the asymmetry of the process, the correct time scale is not achieve for asymmetric
systems as the ASEP (see [4]) or the TAZRP. Nevertheless, the multi-scale argument seems
robust and sharp enough to obtain the results for symmetric systems, see Corollary 7.4 of
[4] and Theorem 1 of [1].
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Since in this longer time scale the process is moving in a reference frame we define now
the current of particles across a characteristic. Let J

N,γ

vx
t

(t) be the current through the moving

bond [vx
t , vx

t + 1] (where vx
t = x + [φ′(ρ)tN1+γ ]) defined as the number of particles that

jump from vx
t to vx

t + 1, from time 0 to tN1+γ :

J
N,γ

vx
t

(t) =
∑

y≥1

(
ηN

t (y + vx
t ) − η0(y + x)

)
.

Since up to this longer time scale the limit density field does not evolve in time and since
this current can be approximated by the difference between the density field at time t and at
time 0 evaluated on the Heaviside function, it holds that:

Proposition 2.5 Fix t ≥ 0, a site x ∈ Z and γ < 1/3. Then,

lim
N→+∞

E
γ
νρ

[(
1√
N

{
J

N,γ

vx
t

(t) − E
γ
νρ

[
J

N,γ

vx
t

(t)
]})2]

= 0.

3 The Hyperbolic Scaling

Recall that as argued above the density fluctuation field Y N
t converges to the field Yt that

depends only on the initial density field Y0, which is a Gaussian white noise, see (2.3).
Now we give a sketch of the proof of Theorem 2.2, namely we establish the C.L.T. for

the current over a fixed bond [x, x + 1]. For simplicity and since the invariant measure is
homogeneous, we prove the result for the bond [−1,0], but for any other bond the same
argument applies. The idea of the proof is to show the convergence of the finite dimensional
distributions of ZN

t /
√

χ(ρ)φ′(ρ) to those of Brownian motion, together with tightness.
We start by the former, namely, first we prove that for every k ≥ 1 and every 0 ≤

t1 < · · · < tk , (ZN
t1

, . . . ,ZN
tk

) converges in law to a Gaussian vector (Zt1 , . . . ,Ztk ), with mean
zero and covariance given by EQ[ZtZs] = χ(ρ)φ′(ρ)s, provided s ≤ t . We notice here that
the covariance of Zt and Zs does only depends on the smaller time s, by the fact that the
current can be written in terms of the density fluctuation field together with the fact that the
fluctuations of this field are linearly transported in time. In order to establish this first claim,
notice that

JN
−1,0(t) =

∑

x≥0

(
ηN

t (x) − η0(x)
)
,

then, formally it holds that

1√
N

{
JN

−1,0(t) − Eνρ [JN
−1,0(t)]

} = Y N
t (H0) − Y N

0 (H0),

where H0 is the Heaviside function defined as H0(u) = 1[0,∞)(u). Approximating H0 by
(Gn)n≥1, such that Gn(u) = (1 − u

n
)+1[0,∞)(u), then we can show that

Proposition 3.1 For every t ≥ 0,

lim
n→+∞ Eνρ

[(
1√
N

{
JN

−1,0(t) − Eνρ [JN
−1,0(t)]

} − (Y N
t (Gn) − Y N

0 (Gn))

)2]
= 0

uniformly in N .
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Proof Fix a site x, use the martingale representation of the current JN
x,x+1(t) as:

MN
x,x+1(t) = JN

x,x+1(t) − N

∫ t

0
g(ηN

s (x))ds.

This is a martingale with respect to the natural filtration Ft = σ(ηN
s , s ≤ t), whose quadratic

variation is given by

〈MN
x,x+1〉t = N

∫ t

0
g(ηN

s (x))ds.

Since JN
x−1,x(t) − JN

x,x+1(t) = ηN
t (x) − η0(x) for all x ∈ Z and t ≥ 0, it holds that

Y N
t (Gn) − Y N

0 (Gn) = 1√
N

∑

x∈Z

Gn

(
x

N

){
JN

x−1,x(t) − JN
x,x+1(t)

}
.

Introducing the expectation of the current inside the brackets on the right hand side of last
expression and making a summation by parts, by using the explicit knowledge of Gn one
can write the expectation in the statement of the Proposition as

Eνρ

[(
1√
N

Nn∑

x=1

1

Nn

{
JN

x−1,x(t) − Eνρ [JN
x−1,x(t)]

}
)2]

.

Using again the martingale representation of the current JN
x−1,x(t), last expression becomes

equal to

Eνρ

[(
1√
N

Nn∑

x=1

1

Nn
MN

x−1,x(t) + 1√
N

∫ t

0

1

n

Nn∑

x=1

(g(ηs(x − 1)) − φ(ρ))ds

)2]
.

Now the goal consists in showing that this expectation vanishes as n → +∞ uniformly
over N . For that, notice that the martingale term converges to 0 in L2(Pνρ ) as n → +∞,
since one can estimate their quadratic variation by Nt and using the fact that they are or-
thogonal, to obtain that

Eνρ

[(
1√
N

Nn∑

x=1

1

Nn
MN

x−1,x(t)

)2]
≤ tC

Nn
.

On the other hand, one can use Schwarz inequality to get to

Eνρ

[(
1√
N

∫ t

0

1

n

Nn∑

x=1

(g(ηs(x − 1)) − φ(ρ))ds

)2]
≤ t2 Var(g, νρ)

n
.

Since (x +y)2 ≤ 2x2 + 2y2 and taking the limit as n → ∞ in the previous expectations, our
proof is concluded. �

The convergence of finite dimensional distributions is an easy consequence of last result
together with Theorem 2.1, for details we refer the reader to [5].

Now, it remains to prove that the distributions of ZN
t /

√
χ(ρ)φ′(ρ) are tight. For that, we

can use the same argument as in Theorem 2.3 of [4], that relies on the use of Theorem 2.1
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of [10] with the definition of weakly positive associated increments given in [11]. One can
follow the same arguments as those of Theorem 2 of [6] to show that the flux of particles
through the bond [−1,0] from time 0 to time t , denoted by J−1,0(t) has weakly positive
associated increments with the definition in [11], see [4] for details. In order to conclude the
proof it remains to note that

lim
t→+∞

1

t
Eνρ

[(
J−1,0(t)

)2] = σ 2,

which follows by Theorem 3 of [6].

4 The Longer Time Scale

4.1 Equilibrium Fluctuations on the Longer Time Scale

In this section we want to prove Theorem 2.3. For that, fix a positive integer k, let
UN

t H(u) = H(u − φ′(ρ)tNγ ) and recall the definition of (Q
γ

N)N≥1. We want to show that
this sequence is tight and to characterize the limiting measure. Notice that following the
same computations as done for the ASEP in Sect. 8 of [4], it is easy to show that the sequence
(Q

γ

N)N≥1 is tight. We leave this computation to the reader. From this result, we impose the
condition k > 1, in order to have the field Yt well defined on the Sobolev space Hk .

Now we characterize the limit field, by fixing H ∈ S(R) such that

M
N,γ
t (H) = Y N,γ

t (H) − Y N,γ

0 (H)

−
∫ t

0

(
Nγ

√
N

∑

x∈Z

∇NUN
s H

(
x

N

)
g(ηN

s (x))

− Nγ

√
N

∑

x∈Z

∂uU
N
s H

(
x

N

)
φ′(ρ)(ηN

s (x) − ρ)

)
ds

is a martingale with respect to the natural filtration σ(ηN
s , s ≤ t) and whose quadratic varia-

tion is given by
∫ t

0

Nγ

N2

∑

x∈Z

(
∇NUN

s H

(
x

N

))2

g(ηN
s (x))ds.

If γ < 1, M
N,γ
t (H) vanishes in L2(Pγ

νρ
), as N → +∞. This means that under the diffu-

sive time scale there is only a contribution to the limit density field given by the integral part
of the martingale.

Now, we want to show that the integral part of the martingale M
N,γ
t (H) vanishes in

L2(Pγ
νρ

), as N → +∞. For this, we can use the fact that
∑

x∈Z
∇NUN

s H( x
N

) = 0 to introduce

it times φ(ρ) in the integral part of the martingale M
N,γ
t (H) and write it as:

∫ t

0

(
Nγ

√
N

∑

x∈Z

∇NUN
s H

(
x

N

)
(g(ηN

s (x)) − φ(ρ))

− Nγ

√
N

∑

x∈Z

∂uU
N
s H

(
x

N

)
φ′(ρ)(ηN

s (x) − ρ)

)
ds.
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By summing and subtracting

∫ t

0

Nγ

√
N

∑

x∈Z

∇NUN
s H

(
x

N

)
φ′(ρ)(ηN

s (x) − ρ)ds,

to the expression above, one can write the integral part of the martingale as:

∫ t

0

Nγ

√
N

∑

x∈Z

∇NUN
s H

(
x

N

)
Vg(η

N
s (x))

− Nγ

√
N

∑

x∈Z

(
∂uU

N
s H

(
x

N

)
− ∇NUN

s H

(
x

N

))
φ′(ρ)(ηN

s (x) − ρ)ds,

where Vg(η(x)) is defined in (2.5).
Using Schwarz inequality, the fact that νρ is a product invariant measure and a Taylor

expansion on UN
s H , last integral vanishes as N → +∞, as long as γ < 1.

Using the Boltzmann-Gibbs Principle, whose proof is sketched in the next section, the
first integral in the expression above vanishes in L2(Pγ

νρ
) as N → +∞ if γ < 1/3. This in

turn implies that if Q is one limiting point of (QN)N , then it is supported on a field Y· that
satisfies Yt (H) = Y0(H) for H ∈ S(R) and Y0 is a Gaussian field with covariance given by
EQ(Y0(G)Y0(H)) = χ(ρ)〈G,H 〉. This concludes the proof of Theorem 2.3.

Remark 4.1 We remark here that as mentioned above, the Boltzmann-Gibbs Principle
should hold for γ < 1/2, which implies that until the time scale N3/2 the temporal evo-
lution of the density field is trivial. Once the Boltzmann-Gibbs Principle is proved to hold
for this longer time scale, then following the same arguments as above, one obtains the result
of Theorem 2.3 for the longer time scale N3/2.

4.2 Current Across a Characteristic

Here we want to prove Proposition 2.5. As in the hyperbolic scaling, it is a consequence of
next result together with Theorem 2.3. For details we refer the reader to [5].

Proposition 4.1 For every t ≥ 0 and γ < 1/3:

lim
n→+∞ E

γ
νρ

[(
1√
N

{
J

N,γ

vx
t

(t) − E
γ
νρ

[
J

N,γ

vx
t

(t)
]} − (

Y N,γ
t (Gn) − Y N,γ

0 (Gn)
))2]

= 0,

uniformly over N .

The proof of this result follows the same lines as the proof of Proposition 9.4 in [4]
and for that reason we have omitted it. This result implies that in order to observe non-
trivial fluctuations of this current the process has to be taken on a longer time scale than
N4/3. In fact, we remark here that once the Boltzmann-Gibbs Principle as stated above is
proven for γ < 1/2, then applying the same argument one can show that the current across
a characteristic also vanishes up to the longer time scale N3/2.
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5 The Boltzmann-Gibbs Principle

In this section we prove Theorem 2.4. Since we are going to generalize the ideas in The-
orem 2.6 of [4] we just remark the novelty and the fundamental differences between the
proofs.

Fix an integer K and a test function H ∈ S(R) and divide Z in non overlapping intervals
of length K , denoted by {Ij , j ≥ 1}.

Then, the expectation appearing in the statement of the Theorem can be written as

E
γ
νρ

[(∫ t

0

Nγ

√
N

∑

j≥1

∑

x∈Ij

H

(
x

N

)
Vg(η

N
s (x))ds

)2]
.

At this stage, the first argument is to replace the empirical mean of H in each interval Ij by
the value of H in yj/N , where yj is a certain point of that interval. For this, we use Schwarz
inequality and the price to pay for this replacement is given by a restriction on the size K

of the interval. The second argument is to replace the empirical mean of Vg in each interval
Ij , by its projection over the conserved quantities of the corresponding interval Ij . This also
brings us a restriction on the size K of the interval Ij . Combining both, we can take the
biggest interval in which these two substitutions can take place. We condition the function
Vg on the locally conserved quantities, since as mentioned in the introduction, they evolve
in a much slower scale than non-conserved ones and the projection of the non-conserved
quantities over the conserved ones is what survives in the limit. We start by computing
explicitly, the restrictions on K in order to perform these two first replacements. Then, the
proof follows by applying these two arguments to intervals of bigger size until a point in
which the remaining is negligible.

With this in mind, for each j ≥ 1 we start by fixing a point yj of the interval Ij . Summing
and subtracting H(

yj

N
) inside the summation over x, and since (x +y)2 ≤ 2x2 + 2y2, we can

bound the expectation above by

2E
γ
νρ

[(∫ t

0

Nγ

√
N

∑

j≥1

∑

x∈Ij

(
H

(
x

N

)
− H

(
yj

N

))
Vg(η

N
s (x))ds

)2]

+ 2E
γ
νρ

[(∫ t

0

Nγ

√
N

∑

j≥1

H

(
yj

N

)∑

x∈Ij

Vg(η
N
s (x))ds

)2]
.

Now, we treat each expectation separately. For the former, the idea is to replace the
empirical mean of H in the interval Ij , by the value of H(

yj

N
). Notice that this expectation

can also be written as

2E
γ
νρ

[(∫ t

0

Nγ

√
N

∑

j≥1

K

(
1

K

∑

x∈Ij

H

(
x

N

)
− H

(
yj

N

))
Vg

(
ηN

s (x)
)
ds

)2]
,

which is easily handled, since by Schwarz inequality and the invariance of νρ it can be
bounded by Ct2N2γ ‖H ′‖2

2(
K
N

)2 and vanishes as long as KNγ−1 → 0, when N → +∞.
In order to treat the remaining expectation we bound it from above by

2E
γ
νρ

[(∫ t

0

Nγ

√
N

∑

j≥1

H

(
yj

N

)
V1,j,g(η

N
s )ds

)2]
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+ 2E
γ
νρ

[(∫ t

0

Nγ

√
N

∑

j≥1

H

(
yj

N

)
Eνρ

[∑

x∈Ij

Vg(η
N
s (x))

∣∣Mj

]
ds

)2]
(5.1)

where

V1,j,g(η) =
∑

x∈Ij

Vg(η(x)) − Eνρ

[∑

x∈Ij

Vg(η(x))
∣∣Mj

]

and Mj = σ(
∑

x∈Ij
η(x)). We treat now the first expectation of the expression above. Notice

as above, that it can also be written as

E
γ
νρ

[(∫ t

0

Nγ

√
N

∑

j≥1

H

(
yj

N

)
K

(
1

K

∑

x∈Ij

Vg(η
N
s (x)) − Eνρ

[
Vg(η

N
s (x))

∣∣Mj

])
ds

)2]
.

So, at this stage, we have to replace the empirical mean of Vg in Ij , by its projection over
the conserved quantities of the interval Ij . Since we are restricted to sets of size K , the con-
served quantities are the set of configurations with a fixed number of particles. The Lemma
below, tell us, how big the size K of the set can be, in order to perform this replacement.

Lemma 5.1 For every H ∈ S(R) and every t > 0, if K2Nγ−1 → 0 as N → +∞, then

lim
N→∞

E
γ
νρ

[(∫ t

0

Nγ

√
N

∑

j≥1

H

(
yj

N

)
V1,j,g(η

N
s )ds

)2]
= 0.

Proof By Proposition A1.6.1 of [7] and by the variational formula for the H−1-norm, the
expectation above is bounded by

Ct
∑

j≥1

sup
h∈L2(νρ )

{
2
∫

Nγ

√
N

H

(
yj

N

)
V1,j,g(η)h(η)νρ(dη) − N1+γ 〈h,−LS

Ij
h〉ρ

}
,

where LS is the Symmetric Zero-Range dynamics restricted to the set Ij , namely:

LS
Ij

f (η) =
∑

x,y∈Ij
|x−y|=1

1

2
g(η(x))[f (ηx,y) − f (η)],

where

ηx,y(z) =
⎧
⎨

⎩

η(z), if z �= x, y,

η(x) − 1, if z = x,

η(y) + 1, if z = y.

For each j and Aj a positive constant, it holds that
∫

V1,j,g(η)h(η)νρ(dη) ≤ 1

2Aj

〈V1,j,g, (−LS
Ij

)−1V1,j,g〉ρ + Aj

2
〈h,−LS

Ij
h〉ρ,

and taking Aj = N3/2(|H(
yj

N
)|)−1, the whole expectation becomes bounded from above by

Ct
∑

j≥1

Nγ

N2
H 2

(
yj

N

)
〈V1,j,g, (−LS

Ij
)−1V1,j,g〉ρ.
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By the spectral gap inequality for the Symmetric Zero-Range process (see [8]) last expres-
sion can be bounded from above by

Ct
∑

j≥1

Nγ

N2
H 2

(
yj

N

)
(K + 1)2 Var(V1,j,g, νρ).

The proof of the Lemma ends if we show that Var(V1,j,g, νρ) ≤ KC, since it implies that
the expectation in the statement of the Lemma to be bounded by Ct Nγ

N
(K + 1)2‖H‖2

2 and
vanishes as long as K2Nγ−1 → 0, when N → +∞. �

Remark 5.1 Here we show that Var(V1,j,g, νρ) ≤ KC.
Since Var(V1,j,g, νρ) ≤ Eνρ [(V1,j,g)

2] and by the definition of V1,j,g it holds that

Var(V1,j,g, νρ) ≤ Eνρ

[(∑

x∈Ij

Vg(η(x)) − Eνρ

[∑

x∈Ij

Vg(η(x))|Mj

])2]
.

By the definition of Vg(η(x)), the right hand side of last expression can be written as

Eνρ

[(∑

x∈Ij

(
g(η(x)) − φ(ρ) − φ′(ρ)(η(x) − ρ)

) −
∑

x∈Ij

φj (ρ) − Kφ(ρ)

−
∑

x∈Ij

φ′(ρ)(ηK
j − ρ)

)2]
,

where φj (ρ) = Eνρ [g(η(0))|Mj ] and ηK
j = 1

K

∑
x∈Ij

η(x). On the other hand, by summing

and subtracting φ(ηK
j ) = Eν

ηK
j

[g(η)], where νηK
j

is the Bernoulli measure with density ηK
j ,

last expression can be bounded by

4Eνρ

[(∑

x∈Ij

(
g(η(x)) − φ(ρ)

))2]
+ 4Eνρ

[(∑

x∈Ij

φ′(ρ)(η(x) − ρ)

)2]

+ 4Eνρ

[(∑

x∈Ij

(
φj (ρ) − φ(ηK

j )
))2]

+ 4Eνρ

[(∑

x∈Ij

(
φ(ηK

j ) − φ(ρ) − φ′(ρ)(ηK
j − ρ)

))2]
.

Now we treat each expectation separately.
For the first and the second one, since (η(x))x are independent under νρ , it is easy to

show that

Eνρ

[(∑

x∈Ij

(
g(η(x)) − φ(ρ)

))2]
≤ K Var(g, νρ)

and

Eνρ

[(∑

x∈Ij

φ′(ρ)(η(x) − ρ)

)2]
≤ (φ′(ρ))2K Var(η(0), νρ).
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On the other hand, to treat the third expectation one can use the equivalence of ensembles
(see Corollary A2.1.7 of [7]) which guarantees that |φj (ρ) − φ(ηK

j )| ≤ C(g)

K
while for the

last one, one can use Taylor expansion to have

Eνρ

[(
φ(ηK

j ) − φ(ρ) − φ′(ρ)(ηK
j − ρ)

)2] ∼ Eνρ

[(
ηK

j − ρ
)4] = O(K−2).

Putting these arguments all together one gets to the bound KC.

We notice here that collecting together the two restrictions on K given above, in order to

perform both replacements in sets of size K , one must have K ∼ O(N
1−γ

2 −ε), for ε > 0.
To conclude the proof it remains to bound the second expectation on (5.1). This is the

second stage of the argument in which we are going to take bigger sets in order to perform
two replacements as above. For that, fix an integer L and take disjoint intervals of length
M = LK , denoted by {I 2

l , l ≥ 1} and write that expectation as:

E
γ
νρ

[(∫ t

0

Nγ

√
N

∑

l≥1

∑

j∈I2
l

H

(
yj

N

)
Eνρ

[∑

x∈Ij

Vg(η
N
s (x))

∣∣∣Mj

]
ds

)2]
.

At the first step we want to replace the empirical mean of H in each one of the sets of
size M (taking K as scale factor) by the value of H in zl/N , where zl is a certain point of
the interval I 2

l . Then, for each l ≥ 1, fix a point zl in I 2
l , by summing and subtracting H(

zl

N
)

inside the summation over j , last expectation can be bounded by

2E
γ
νρ

[(∫ t

0

Nγ

√
N

∑

l≥1

∑

j∈I2
l

(
H

(
yj

N

)
− H

(
zl

N

))
Eνρ

[∑

x∈Ij

Vg(η
N
s (x))

∣∣∣Mj

]
ds

)2]

+ 2E
γ
νρ

[(∫ t

0

Nγ

√
N

∑

l≥1

H

(
zl

N

) ∑

j∈I2
l

Eνρ

[∑

x∈Ij

Vg(η
N
s (x))

∣∣∣Mj

]
ds

)2]
.

Now, notice that the first expectation above can be written as

E
γ
νρ

[(∫ t

0

Nγ

√
N

∑

l≥1

L

(
1

L

∑

j∈I2
l

H

(
yj

N

)
− H

(
zl

N

))

× Eνρ

[∑

x∈Ij

Vg(η
N
s (x))

∣∣∣Mj

]
ds

)2]
.

Following the same arguments as above it is easy to show that, under the Schwarz in-
equality, this expectation vanishes if L2KN2γ−2 → 0 as N → +∞. This is the first restric-
tion on the size M of the intervals (I 2

l )l .
In order to treat the second expectation, inside the summation over l sum and subtract

Eνρ [
∑

x∈I2
l
Vg(η

N
s (x))|M2

l ], where M2
l = σ(

∑
x∈I2

l
η(x)) and bound it from above by

2E
γ
νρ

[(∫ t

0

Nγ

√
N

∑

l≥1

H

(
zl

N

)
V2,l,g(η

N
s )ds

)2]

+ 2E
γ
νρ

[(∫ t

0

Nγ

√
N

∑

l≥1

H

(
zl

N

)
Eνρ

[∑

x∈I2
l

Vg(η
N
s (x))

∣∣∣M2
l

]
ds

)2]
,
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where

V2,l,g(η) =
∑

j∈I2
l

Eνρ

[∑

x∈Ij

Vg(η(x))

∣∣∣Mj

]
− Eνρ

[∑

x∈I2
l

Vg(η(x))

∣∣∣M2
l

]
.

Now we treat the first expectation of last expression. Notice that it can also be written as

2E
γ
νρ

[(∫ t

0

Nγ

√
N

∑

l≥1

H

(
zl

N

)
M

(
1

L

∑

j∈I2
l

Eνρ

[
Vg(η

N
s (x))

∣∣Mj

]

− Eνρ

[
Vg(η

N
s (x))

∣∣M2
l

])
ds

)2]
.

This is the second step at this stage of the argument. Here, we want to replace the empir-
ical mean in the intervals of size L of the projection of Vg on the conserved quantities of the
intervals of size K , by its projection on the conserved quantities of the intervals of size M .
This will bring us the second restriction on the size M of the intervals (I 2

l )l that allow us to
perform both replacements. As above we prove that:

Lemma 5.2 For every H ∈ S(R) and every t > 0, if L2KNγ−1 → 0 as N → +∞, then

lim
N→∞

E
γ
νρ

[(∫ t

0

Nγ

√
N

∑

l≥1

H

(
zl

N

)
V2,l,g

(
ηN

s )ds

)2]
= 0.

Proof Following the proof of Lemma 5.1, the expectation above becomes bounded by

Ct
∑

l≥1

sup
h∈L2(νρ )

{
2
∫

Nγ

√
N

H

(
zl

N

)
V2,l,g(η)h(η)νρ(dη) − N1+γ 〈h,−LS

I2
l

h〉ρ
}
.

Using an appropriate Al and the spectral gap inequality, last expression is bounded by

Ct
∑

l≥1

Nγ

N2
H 2

(
zl

N

)
(M + 1)2 Var(V2,l,g, νρ).

Now, the proof ends as long as Var(V2,l,g, νρ) ≤ LC, which is proved below. �

Remark 5.2 Here we show that Var(V2,l,g, νρ) ≤ LC.
Since Var(V2,l,g, νρ) ≤ Eνρ [(V2,l,g)

2] and by the definition of V2,l,g we have that

Var(V2,l,g, νρ) ≤ Eνρ

[(∑

j∈I2
l

Eνρ

[∑

x∈Ij

Vg(η(x))

∣∣∣Mj

]
− Eνρ

[∑

x∈I2
l

Vg(η(x))

∣∣∣M2
l

])2]
.

By the definition of Vg(η(x)) and the notation introduced above, one can write the right
hand side of last expression as

Eνρ

[(∑

j∈I2
l

(
Kφj(ρ) − Kφ(ρ) − φ′(ρ)K(ηK

j − ρ)
) − Mφl(ρ) − Mφ(ρ)

− Mφ′(ρ)(ηM
l − ρ)

)2]
,
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where φl(ρ) = Eνρ [g(η(0))|Ml] and ηM
l = 1

M

∑
x∈I2

l
η(x). Last expression can be written as

Eνρ

[(
M

{
1

M

∑

j∈I2
l

(
Kφj(ρ) − Kφ(ρ) − φ′(ρ)K(ηK

j − ρ)
) − φl(ρ)

− φ(ρ) − φ′(ρ)(ηM
l − ρ)

})2]

= Eνρ

[(
M

{
1

L

∑

j∈I2
l

(
φj (ρ) − φ′(ρ)(ηK

j − ρ) − φl(ρ) − φ′(ρ)(ηM
l − ρ)

)})2]

= M2

L
Eνρ

[(
1√
L

∑

j∈I2
l

(
φj (ρ) − φ′(ρ)(ηK

j − ρ) − φl(ρ) − φ′(ρ)(ηM
l − ρ)

))2]
.

By the independence of the random variables (η(x))x under νρ and the Central Limit
Theorem, last expectation is of order

Eνρ

[(
φj (ρ) − φ(ρ) − φ′(ρ)(ηK

j − ρ)
)2]

,

which we can bound from above by

2Eνρ

[(
φj (ρ) − φ(ηK

j )
)2] + 2Eνρ

[(
φ(ηK

j ) − φ(ρ) − φ′(ρ)(ηK
j − ρ)

)2]
.

By the equivalence of ensembles the expectation on the left hand side of last expression is
bounded by CK−2. For the other, use Taylor expansion to have that

Eνρ

[(
φ(ηK

j ) − φ(ρ) − φ′(ρ)[ηK
j − ρ])2] ∼ Eνρ

[(
ηK

j − ρ
)4] = O(K−2)

which is enough to finish the proof of the remark.

At this stage the restrictions on the size M of the second interval come from the
four previous estimates. Since from the first stage of the argument we are able to take

K ∼ O(N
1−γ

2 −ε), then by the two previous estimates we can take L ∼ O(N
1−γ

4 ). Collecting

these facts together it implies that M ∼ O(N
1−γ

2 + 1−γ
4 −ε).

Following the same arguments as before, take n sufficiently big for which in the n-th
stage of the proof we have intervals, denoted by {I n

m,m ≥ 1 ≥} of length Kn ∼ N1−γ . At
this stage, it remains to bound:

E
γ
νρ

[(∫ t

0

Nγ

√
N

∑

m≥1

H

(
zm

N

)
Eνρ

(∑

x∈In
m

Vg(η
N
s (x))

∣∣∣Mn
m

)
ds

)2]
,

where for each m, zm is one point of the interval I n
m and Mn

m = σ(
∑

x∈In
m

η(x)). By Schwarz
inequality and since νρ is an invariant product measure, last expectation can be bounded by

t2 N2γ

N

∑

m≥1

(
H

(
zm

N

))2

Eνρ

[(
Eνρ

[ ∑

x∈In
m

Vg(η(x))

∣∣∣Mn
m

])2]
.
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Now, if one shows that the expectation above is of order O(1), it implies the whole expres-
sion to be bounded from above by N2γ

Kn
and since γ < 1/3, it vanishes as N → +∞. This is

the only part in the proof that we impose the restriction on speed of the time scale.

Remark 5.3 Here we show that Eνρ [(Eνρ [
∑

x∈In
m

Vg(η(x))|Mn
m])2] = O(1).

By the definition of Vg(η(x)), the expectation above is equal to

Eνρ

[(
Eνρ

[∑

x∈In
m

(
φKn(ρ) − φ(ρ) − φ′(ρ)(ηKn

n − ρ)
)])2]

and bounded from above by

2Eνρ

[(
Eνρ

[∑

x∈In
m

(
φKn(ρ) − φ(ηKn

n )
)])2]

+ 2Eνρ

[(
Eνρ

[∑

x∈In
m

(
φ(ηKn

n ) − φ(ρ) − φ′(ρ)(ηKn
n − ρ)

)])2]
,

where φKn(ρ) = Eνρ [g(η(0))|Mn
m] and ηKn

n = 1
Kn

∑
x∈In

m
η(x). Now, the result follows if

one applies the equivalence of ensembles to the expectation on the left hand side and Taylor
expansion to the expectation on the right hand side of last expression, as explained above.

Remark 5.4 Here we give an application of the Boltzmann-Gibbs Principle for a linear func-
tional associated to the one-dimensional Symmetric Zero-Range process evolving on the
diffusive scaling N2. Consider the Markov process ηt evolving on the parabolic time scale
and with generator LS given on local functions f : N

Z → R by

LSf (η) =
∑

x,y∈Z

|x−y|=1

1

2
g(η(x))[f (ηx,y) − f (η)],

with ηx,y as defined in the proof of Lemma 5.1. Let Pνρ be the probability measure in
D(R+,N

Z) induced by νρ and η· evolving on the time scale N2, namely ηN
t = ηtN2 and

denote by Eνρ the expectation with respect to Pνρ . If one repeats the same steps as in the
proof of Theorem 2.4, one can show that:

Corollary 5.3 Fix β < 1/2. Then, for every t > 0 and H ∈ S(R)

lim
N→∞

Eνρ

[(
Nβ

∫ t

0

1√
N

∑

x∈Z

H

(
x

N

)
Vg(η

N
s (x))ds

)2]
= 0,

where Vg(η(x)) was defined in (2.5).

So, in order to observe non-trivial fluctuations for this field one has to take β ≥ 1/2.
A very interesting problem is to establish the limit of this linear functional when β = 1/2.
For the Symmetric Simple Exclusion process starting from the Bernoulli product measure
μα , evolving on the diffusive scaling N2, for β = 1/2 and g(η(x)) = (η(x) − α)(η(x +
1) − α) which defines the quadratic density field, it was proved in [1] that this functional
converges in law to a non-Gaussian singular functional of an infinite-dimensional Ornstein-
Uhlenbeck process. The case for the Zero-Range process is still open.
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